3.444 \(\int \frac{\cos ^6(c+d x)}{(a+b \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=187 \[ \frac{10 a \left (a^2-b^2\right )^{3/2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{b^6 d}-\frac{5 \cos (c+d x) \left (8 a \left (a^2-b^2\right )-b \left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{8 b^5 d}-\frac{5 x \left (-12 a^2 b^2+8 a^4+3 b^4\right )}{8 b^6}+\frac{5 \cos ^3(c+d x) (4 a-3 b \sin (c+d x))}{12 b^3 d}-\frac{\cos ^5(c+d x)}{b d (a+b \sin (c+d x))} \]

[Out]

(-5*(8*a^4 - 12*a^2*b^2 + 3*b^4)*x)/(8*b^6) + (10*a*(a^2 - b^2)^(3/2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2
 - b^2]])/(b^6*d) + (5*Cos[c + d*x]^3*(4*a - 3*b*Sin[c + d*x]))/(12*b^3*d) - Cos[c + d*x]^5/(b*d*(a + b*Sin[c
+ d*x])) - (5*Cos[c + d*x]*(8*a*(a^2 - b^2) - b*(4*a^2 - 3*b^2)*Sin[c + d*x]))/(8*b^5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.371367, antiderivative size = 187, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {2693, 2865, 2735, 2660, 618, 204} \[ \frac{10 a \left (a^2-b^2\right )^{3/2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{b^6 d}-\frac{5 \cos (c+d x) \left (8 a \left (a^2-b^2\right )-b \left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{8 b^5 d}-\frac{5 x \left (-12 a^2 b^2+8 a^4+3 b^4\right )}{8 b^6}+\frac{5 \cos ^3(c+d x) (4 a-3 b \sin (c+d x))}{12 b^3 d}-\frac{\cos ^5(c+d x)}{b d (a+b \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^6/(a + b*Sin[c + d*x])^2,x]

[Out]

(-5*(8*a^4 - 12*a^2*b^2 + 3*b^4)*x)/(8*b^6) + (10*a*(a^2 - b^2)^(3/2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2
 - b^2]])/(b^6*d) + (5*Cos[c + d*x]^3*(4*a - 3*b*Sin[c + d*x]))/(12*b^3*d) - Cos[c + d*x]^5/(b*d*(a + b*Sin[c
+ d*x])) - (5*Cos[c + d*x]*(8*a*(a^2 - b^2) - b*(4*a^2 - 3*b^2)*Sin[c + d*x]))/(8*b^5*d)

Rule 2693

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(g^2*(p - 1))/(b*(m + 1)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2865

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x]))/(b^2*f*(m + p)*(m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(m + p)*(m + p +
 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^6(c+d x)}{(a+b \sin (c+d x))^2} \, dx &=-\frac{\cos ^5(c+d x)}{b d (a+b \sin (c+d x))}-\frac{5 \int \frac{\cos ^4(c+d x) \sin (c+d x)}{a+b \sin (c+d x)} \, dx}{b}\\ &=\frac{5 \cos ^3(c+d x) (4 a-3 b \sin (c+d x))}{12 b^3 d}-\frac{\cos ^5(c+d x)}{b d (a+b \sin (c+d x))}-\frac{5 \int \frac{\cos ^2(c+d x) \left (-a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{4 b^3}\\ &=\frac{5 \cos ^3(c+d x) (4 a-3 b \sin (c+d x))}{12 b^3 d}-\frac{\cos ^5(c+d x)}{b d (a+b \sin (c+d x))}-\frac{5 \cos (c+d x) \left (8 a \left (a^2-b^2\right )-b \left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{8 b^5 d}-\frac{5 \int \frac{a b \left (4 a^2-5 b^2\right )+\left (8 a^4-12 a^2 b^2+3 b^4\right ) \sin (c+d x)}{a+b \sin (c+d x)} \, dx}{8 b^5}\\ &=-\frac{5 \left (8 a^4-12 a^2 b^2+3 b^4\right ) x}{8 b^6}+\frac{5 \cos ^3(c+d x) (4 a-3 b \sin (c+d x))}{12 b^3 d}-\frac{\cos ^5(c+d x)}{b d (a+b \sin (c+d x))}-\frac{5 \cos (c+d x) \left (8 a \left (a^2-b^2\right )-b \left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{8 b^5 d}+\frac{\left (5 a \left (a^2-b^2\right )^2\right ) \int \frac{1}{a+b \sin (c+d x)} \, dx}{b^6}\\ &=-\frac{5 \left (8 a^4-12 a^2 b^2+3 b^4\right ) x}{8 b^6}+\frac{5 \cos ^3(c+d x) (4 a-3 b \sin (c+d x))}{12 b^3 d}-\frac{\cos ^5(c+d x)}{b d (a+b \sin (c+d x))}-\frac{5 \cos (c+d x) \left (8 a \left (a^2-b^2\right )-b \left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{8 b^5 d}+\frac{\left (10 a \left (a^2-b^2\right )^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^6 d}\\ &=-\frac{5 \left (8 a^4-12 a^2 b^2+3 b^4\right ) x}{8 b^6}+\frac{5 \cos ^3(c+d x) (4 a-3 b \sin (c+d x))}{12 b^3 d}-\frac{\cos ^5(c+d x)}{b d (a+b \sin (c+d x))}-\frac{5 \cos (c+d x) \left (8 a \left (a^2-b^2\right )-b \left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{8 b^5 d}-\frac{\left (20 a \left (a^2-b^2\right )^2\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^6 d}\\ &=-\frac{5 \left (8 a^4-12 a^2 b^2+3 b^4\right ) x}{8 b^6}+\frac{10 a \left (a^2-b^2\right )^{3/2} \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{b^6 d}+\frac{5 \cos ^3(c+d x) (4 a-3 b \sin (c+d x))}{12 b^3 d}-\frac{\cos ^5(c+d x)}{b d (a+b \sin (c+d x))}-\frac{5 \cos (c+d x) \left (8 a \left (a^2-b^2\right )-b \left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{8 b^5 d}\\ \end{align*}

Mathematica [B]  time = 6.54191, size = 3695, normalized size = 19.76 \[ \text{Result too large to show} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^6/(a + b*Sin[c + d*x])^2,x]

[Out]

(Cos[c + d*x]^5*(-((b*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(7/2)*(b/(a + b) - (b*Sin[c + d*x])/(a + b))^(
7/2))/(((a*b)/(a - b) - b^2/(a - b))*((a*b)/(a + b) + b^2/(a + b))*(a + b*Sin[c + d*x]))) - ((48*Sqrt[2]*(a -
b)*b^3*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(7/2)*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b
)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(7/2)*((7*(3/(16*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c +
d*x])/(a - b)))/(2*b))^3) + 1/(2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a
 - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1)))/12 + (35*b^4*(((a - b)*(-(b/(a - b)) - (b*Sin[c
 + d*x])/(a - b)))/b - ((a - b)^2*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^2)/(3*b^2) + (2*(a - b)^3*(-(b/(a
- b)) - (b*Sin[c + d*x])/(a - b))^3)/(15*b^3) - (Sqrt[2]*Sqrt[a - b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) -
(b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[b]*Sqrt[1 +
 ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b)])))/(128*(a - b)^4*(-(b/(a - b)) - (b*Sin[c + d*x])
/(a - b))^4*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^3)))/(7*(a + b)^2*(a^2 - b^2)*Sqrt
[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b]) + (5*a*b^2*((8*Sqrt[2]*b*(-(b/(a - b)) - (b*Sin[c + d*x]
)/(a - b))^(5/2)*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a
- b)))/(2*b))^(7/2)*((5/(16*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^3) + 5/(8*(1 + ((a
 - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a
 - b)))/(2*b))^(-1))/2 - (15*b^3*(((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/b - ((a - b)^2*(-(b/(a -
 b)) - (b*Sin[c + d*x])/(a - b))^2)/(3*b^2) - (Sqrt[2]*Sqrt[a - b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b
*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[b]*Sqrt[1 + (
(a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b)])))/(64*(a - b)^3*(-(b/(a - b)) - (b*Sin[c + d*x])/(a
 - b))^3*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^3)))/(5*(a + b)^2*Sqrt[((a + b)*(b/(a
 + b) - (b*Sin[c + d*x])/(a + b)))/b]) - ((-((a*b)/(a - b)) + b^2/(a - b))*((8*Sqrt[2]*b*(-(b/(a - b)) - (b*Si
n[c + d*x])/(a - b))^(3/2)*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c +
 d*x])/(a - b)))/(2*b))^(7/2)*((3*(5/(8*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^3) + 5
/(6*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[
c + d*x])/(a - b)))/(2*b))^(-1)))/8 + (15*b^2*(((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/b - (Sqrt[2
]*Sqrt[a - b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])]*Sqrt[-(b/
(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[b]*Sqrt[1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2
*b)])))/(64*(a - b)^2*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x
])/(a - b)))/(2*b))^3)))/(3*(a + b)^2*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b]) - ((-((a*b)/(a
 - b)) + b^2/(a - b))*((8*Sqrt[2]*b*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c +
d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(7/2)*((5*Sqrt[b]*ArcSinh[(Sqrt
[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])])/(8*Sqrt[2]*Sqrt[a - b]*Sqrt[-(b/(a
- b)) - (b*Sin[c + d*x])/(a - b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(7/2)) + (15
/(8*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^3) + 5/(4*(1 + ((a - b)*(-(b/(a - b)) - (b
*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1))/6))
/((a + b)^2*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b]) - ((-((a*b)/(a - b)) + b^2/(a - b))*(-((
(-((a*b)/(a + b)) - b^2/(a + b))*(-(((-((a*b)/(a + b)) - b^2/(a + b))*((-2*(-((a*b)/(a + b)) - b^2/(a + b))*Ar
cTan[(Sqrt[(a*b)/(a + b) + b^2/(a + b)]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[-((a*b)/(a - b))
+ b^2/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)])])/(b*Sqrt[-((a*b)/(a - b)) + b^2/(a - b)]*Sqrt[(a*b
)/(a + b) + b^2/(a + b)]) + (2*Sqrt[a - b]*ArcTanh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])
/(Sqrt[a + b]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)])])/(b*Sqrt[a + b])))/b) + (2*Sqrt[2]*(a - b)*Sqrt[-(b
/(a - b)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) -
 (b*Sin[c + d*x])/(a - b)))/(2*b))^(3/2)*((Sqrt[b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(
a - b)])/(Sqrt[2]*Sqrt[b])])/(Sqrt[2]*Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*(1 + ((a - b)*
(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(3/2)) + 1/(2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])
/(a - b)))/(2*b)))))/(b*(a + b)*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b])))/b) + (4*Sqrt[2]*(a
 - b)*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(
-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)*((3*Sqrt[b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b
*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])])/(4*Sqrt[2]*Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a -
b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)) + (3/(2*(1 + ((a - b)*(-(b/(a - b))
 - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1)
)/4))/((a + b)^2*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b])))/b))/b))/b))/(a^2 - b^2))/(((a*b)/
(a - b) - b^2/(a - b))*((a*b)/(a + b) + b^2/(a + b)))))/(d*(1 - (a + b*Sin[c + d*x])/(a - b))^(5/2)*(1 - (a +
b*Sin[c + d*x])/(a + b))^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.093, size = 1021, normalized size = 5.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6/(a+b*sin(d*x+c))^2,x)

[Out]

28/3/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^4*a-10/d/b^6*arctan(tan(1/2*d*x+1/2*c))*a^4+15/d/b^4*arctan(tan(1/2*d*x+1/
2*c))*a^2-2/d/b^5/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*a^4+4/d/b^3/(tan(1/2*d*x+1/2*c)^2*a+2*tan(
1/2*d*x+1/2*c)*b+a)*a^2+9/4/d/b^2/(1+tan(1/2*d*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^7+1/4/d/b^2/(1+tan(1/2*d*x+1/2
*c)^2)^4*tan(1/2*d*x+1/2*c)^5-1/4/d/b^2/(1+tan(1/2*d*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^3-9/4/d/b^2/(1+tan(1/2*d
*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)-2/d/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)/a*tan(1/2*d*x+1/2*c)-8
/d/b^5/(1+tan(1/2*d*x+1/2*c)^2)^4*a^3+28/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^4*a+3/d/b^4/(1+ta
n(1/2*d*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^3*a^2-24/d/b^5/(1+tan(1/2*d*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^2*a^3+76
/3/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^2*a+3/d/b^4/(1+tan(1/2*d*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*
c)*a^2-2/d/b^4/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*a^3*tan(1/2*d*x+1/2*c)-24/d/b^5/(1+tan(1/2*d*
x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^4*a^3-15/4/d/b^2*arctan(tan(1/2*d*x+1/2*c))-2/d/b/(tan(1/2*d*x+1/2*c)^2*a+2*t
an(1/2*d*x+1/2*c)*b+a)+4/d/b^2/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*a*tan(1/2*d*x+1/2*c)+10/d/b^6
*a^5/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))-20/d/b^4*a^3/(a^2-b^2)^(1/2)*arc
tan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))+10/d/b^2*a/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1
/2*c)+2*b)/(a^2-b^2)^(1/2))-3/d/b^4/(1+tan(1/2*d*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^7*a^2-8/d/b^5/(1+tan(1/2*d*x
+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^6*a^3+12/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^6*a-3/d/b^4/(1+ta
n(1/2*d*x+1/2*c)^2)^4*tan(1/2*d*x+1/2*c)^5*a^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.24932, size = 1364, normalized size = 7.29 \begin{align*} \left [\frac{6 \, b^{5} \cos \left (d x + c\right )^{5} - 5 \,{\left (4 \, a^{2} b^{3} - 3 \, b^{5}\right )} \cos \left (d x + c\right )^{3} - 15 \,{\left (8 \, a^{5} - 12 \, a^{3} b^{2} + 3 \, a b^{4}\right )} d x - 60 \,{\left (a^{4} - a^{2} b^{2} +{\left (a^{3} b - a b^{3}\right )} \sin \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}} \log \left (\frac{{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} + 2 \,{\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) - 15 \,{\left (8 \, a^{4} b - 12 \, a^{2} b^{3} + 3 \, b^{5}\right )} \cos \left (d x + c\right ) + 5 \,{\left (2 \, a b^{4} \cos \left (d x + c\right )^{3} - 3 \,{\left (8 \, a^{4} b - 12 \, a^{2} b^{3} + 3 \, b^{5}\right )} d x - 3 \,{\left (4 \, a^{3} b^{2} - 5 \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \,{\left (b^{7} d \sin \left (d x + c\right ) + a b^{6} d\right )}}, \frac{6 \, b^{5} \cos \left (d x + c\right )^{5} - 5 \,{\left (4 \, a^{2} b^{3} - 3 \, b^{5}\right )} \cos \left (d x + c\right )^{3} - 15 \,{\left (8 \, a^{5} - 12 \, a^{3} b^{2} + 3 \, a b^{4}\right )} d x - 120 \,{\left (a^{4} - a^{2} b^{2} +{\left (a^{3} b - a b^{3}\right )} \sin \left (d x + c\right )\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \sin \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) - 15 \,{\left (8 \, a^{4} b - 12 \, a^{2} b^{3} + 3 \, b^{5}\right )} \cos \left (d x + c\right ) + 5 \,{\left (2 \, a b^{4} \cos \left (d x + c\right )^{3} - 3 \,{\left (8 \, a^{4} b - 12 \, a^{2} b^{3} + 3 \, b^{5}\right )} d x - 3 \,{\left (4 \, a^{3} b^{2} - 5 \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \,{\left (b^{7} d \sin \left (d x + c\right ) + a b^{6} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/24*(6*b^5*cos(d*x + c)^5 - 5*(4*a^2*b^3 - 3*b^5)*cos(d*x + c)^3 - 15*(8*a^5 - 12*a^3*b^2 + 3*a*b^4)*d*x - 6
0*(a^4 - a^2*b^2 + (a^3*b - a*b^3)*sin(d*x + c))*sqrt(-a^2 + b^2)*log(((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*si
n(d*x + c) - a^2 - b^2 + 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^
2 - 2*a*b*sin(d*x + c) - a^2 - b^2)) - 15*(8*a^4*b - 12*a^2*b^3 + 3*b^5)*cos(d*x + c) + 5*(2*a*b^4*cos(d*x + c
)^3 - 3*(8*a^4*b - 12*a^2*b^3 + 3*b^5)*d*x - 3*(4*a^3*b^2 - 5*a*b^4)*cos(d*x + c))*sin(d*x + c))/(b^7*d*sin(d*
x + c) + a*b^6*d), 1/24*(6*b^5*cos(d*x + c)^5 - 5*(4*a^2*b^3 - 3*b^5)*cos(d*x + c)^3 - 15*(8*a^5 - 12*a^3*b^2
+ 3*a*b^4)*d*x - 120*(a^4 - a^2*b^2 + (a^3*b - a*b^3)*sin(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) +
b)/(sqrt(a^2 - b^2)*cos(d*x + c))) - 15*(8*a^4*b - 12*a^2*b^3 + 3*b^5)*cos(d*x + c) + 5*(2*a*b^4*cos(d*x + c)^
3 - 3*(8*a^4*b - 12*a^2*b^3 + 3*b^5)*d*x - 3*(4*a^3*b^2 - 5*a*b^4)*cos(d*x + c))*sin(d*x + c))/(b^7*d*sin(d*x
+ c) + a*b^6*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6/(a+b*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.12455, size = 633, normalized size = 3.39 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-1/24*(15*(8*a^4 - 12*a^2*b^2 + 3*b^4)*(d*x + c)/b^6 - 240*(a^5 - 2*a^3*b^2 + a*b^4)*(pi*floor(1/2*(d*x + c)/p
i + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*b^6) + 48*(a^4*b*tan(
1/2*d*x + 1/2*c) - 2*a^2*b^3*tan(1/2*d*x + 1/2*c) + b^5*tan(1/2*d*x + 1/2*c) + a^5 - 2*a^3*b^2 + a*b^4)/((a*ta
n(1/2*d*x + 1/2*c)^2 + 2*b*tan(1/2*d*x + 1/2*c) + a)*a*b^5) + 2*(36*a^2*b*tan(1/2*d*x + 1/2*c)^7 - 27*b^3*tan(
1/2*d*x + 1/2*c)^7 + 96*a^3*tan(1/2*d*x + 1/2*c)^6 - 144*a*b^2*tan(1/2*d*x + 1/2*c)^6 + 36*a^2*b*tan(1/2*d*x +
 1/2*c)^5 - 3*b^3*tan(1/2*d*x + 1/2*c)^5 + 288*a^3*tan(1/2*d*x + 1/2*c)^4 - 336*a*b^2*tan(1/2*d*x + 1/2*c)^4 -
 36*a^2*b*tan(1/2*d*x + 1/2*c)^3 + 3*b^3*tan(1/2*d*x + 1/2*c)^3 + 288*a^3*tan(1/2*d*x + 1/2*c)^2 - 304*a*b^2*t
an(1/2*d*x + 1/2*c)^2 - 36*a^2*b*tan(1/2*d*x + 1/2*c) + 27*b^3*tan(1/2*d*x + 1/2*c) + 96*a^3 - 112*a*b^2)/((ta
n(1/2*d*x + 1/2*c)^2 + 1)^4*b^5))/d